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Abstract:
This paper addresses the problem of existence of the superconvergence points

by a computer based proof. We prove a basic mathematical theorem that the
superconvergence point exists if and only if it can be found by certain numerical
algorithm. We address the problem of the superconvergence points for the gradient
of the finite element solution of the Laplace and Poisson equations. Our study
shows that the sets of superconvergence points are very different for these two cases.
We consider triangular as well as quadrilateral elements of degree p, 1 < p _< 7.
In the case of quadrilateral elements we analyze, among others, the tensor-product
and the serendipity elements.
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1 Introduction.

Let uh be a one parameter sequence of finite element solutions of a problem
which are computed using a sequence of meshes T = {Th} and let u denote the
exact solution. Let us assume that we are interested in the values of the solution
or its derivatives or combinations of these quantities i.e. in the linear functional

F(u)(u). Let us assume that for every element T of the mesh T, a special point i,
which depends on the geometry (but not the size) of the element, is given. Then
denoting

(1.1) 'P(u - u) = max IF(u - us)(z)l

we are interested in the values of

(1.2) E(t;F;uu, h, )= IF(u - ush)(U)l
T( - Uk)

If the point i is such that

(1.3) 9(i;F;u,uh,h,T)---+O as h--,O

then i will be called a u-superconvergence point relatively to the exact solution u
and the family of meshes T. Consider now a family U of solutions; the point i will
be a U-superconvergence point if it is u-superconvergence point for every u E U.
Obviously e(i; F; u, u%, h, r) _< 1. If 41 (u - uh) = 0 in r then we define

%e; F; U, Uh, h, 1-) = 0. Practically we can be interested only in the case that

(1.4) %(r;F;u, uh, h,T") < 97 < 1

uniformly for all u E U and Th E T. In the present paper we will address the case of
superconvergence in the sense (1.3). The superconvergence of this type was studied
by many investigators; see for example 11-27] and the citations in these papers. The
i9-superconvergence was not analyzed in the literature; we will address this type
of superconvergence for meshes of triangles (resp. meshes of quadrilaterals) in [28]
(resp. [29]).

In this paper we will study the superconvergence problem when F(u) is a deriva-
tive of u. Here we will address in detail only the cases of the Laplace and the Poisson
equation for meshes of triangular and quadrilateral elements of degree p. We will
address the elasticity problem in [30].
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Our approach is completely different than all other studies of superconvergence.
In particular our approach is computer-based proof: We prove a theorem that the
superconvergence point ezists if and only if it can be found by a numerical algorithm.
Based on this theorem we wrote a computer program, by employing this program
we can decide whether the U- or u-superconvergence points exist or not and if so
where they are located. By this approach we can handle automatically elements of
arbitrary degree and U-superconvergence for any class of solutions. This is essential
because often in practice we treat only homogeneous differential equations.

Given a family of finite-element meshes and a corresponding family of conform-
ing piecewise polynomial spaces of degree p, the superconvergence points (for a
quantity of interest) in an element in the interior of the domain may or may not
exist depending on

1. The geometry of the grid.

2. The class of solutions of interest.

S. The span of the local polynomial spaces in each element.

Following this Introduction we outline the model problem of orthotropic heat-
conduction; here we study in detail the superconvergence for the isotropic case
(i.e. Laplace's and Poisson's equations) but the same approach can be employed
for the general orthotropic case. We present the theoretical setting of the study
and describe the computer-based approach which gives the asymptotic properties
of the gradient of the error in the interior of the grid. We then demonstrate that the
numerical approach can be employed to find the classical superconvergence points
(if they exist) in the interior of locally periodic finite element meshes of triangular
or square elements of any polynomial degree.

2 Preliminaries.

2.1 The model problem

Let us consider the model problem of heat-conduction in orthotropic medium
with mixed boundary conditions. Let 9 C_ R2 be a bounded polygonal domain
and let its boundary ai be split into two parts rD and rN. Let u be the solution
of the problem

(2.1a) C(U) := - K,,a o in 0,
Js,L=I J

(2.1b) u = 0 on 'D,
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2
(2.1c) E qj(znl = on rN.

h,=1

Here K•,, k, I = 1, 2 are the entries of the thermal-conductimty matrix which
satisfy the conditions

(2.2a) Ku = Km,, k,I -- 1,2

2
(2.2b) 0< Kin(C, +e)_ K < K-.(+•) VI=(IV 2 ) E R,

k,I-I

where K.-., K. are the principal thermal conductivities;

2 a3

are the components of the flux (heat-fluz); nA, k = 1, 2 are the components of the
unit outer vector to 80; 1 E L2((), 4 E L2(rN) are given data.

Remark 2.1. The majority of the numerical results will be presented for the case
of Poisson's equation for which KU = 6U, where 6S is Kronecker's delta.

Let Hr, (fl) {u E H1(fl) I u 0 on r..}. Then the above problem may be
put in the variational form: Find u E HrD(fl) such that

(2.4) Bn(u,V) = LO(v) V v E HrD(n)

where

(2.5a) BO(U,v) := 2 - ,

and

(2.5b) LO(v) := fiv + fr itv.
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if ID = 0 we assume that the data f, • satisfy the consuitency condition

(2.6) f" ! + o

We define the energy-norm by

(2.7) lllulll' := B,.(u,,,)

Let T := {Th} be a regular-family of meshes of triangles or quadrilaterals.
(For the meshes of triangles it is assumed that for any elements T,, i"j E TI, the
intersection T-lnrj is either empty, a vertex or a common edge, and that the minimal
angle of all the elements is bounded below by a positive constant, the same for all
meshes. For the meshes of quadrilaterals we employ similar assumptions as in
[8], [9]. The meshes T, are not assumed to be quasiuniform.) We introduce the
conforming finite-element spaces

(2.8) Sh := {u E CO(O) Il,,j o F.,, E P(f), k =M(Th)},

where F,• is a vector-valued mapping function for the k-th finite element (for the
proper assumptions on the smoothness of the transformation see [8], [9], [20], [26]);
.P(÷) denotes the element-space of polynomials defined over the master-element
'; M(Th) is the number of elements in the mesh Th.

Below we will consider the following choices for the element-space S'(fl:

a. Complete polynomial space up to degree p.

In the case of triangular elements we have p,(i) = 15p,(÷) where

(2.9) 7PP(fi:={ hiio P( 1,i 2)=

In the case of quadrilaterals we will consider the following choices for the defi-
nition of the polynomial space 4('o (see also [31]).

6. Tensor-product (bi-p) polynomial space of degree p.

(2.10) &(.P)(+) = {P I E(aid)= '1j }
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c. Serendipity (trunc) polynomial space of degree p.

(2.11) &( {P) P('I 1 ' 2) aid 'ij1 ZV +cZ%.1 4~2 ' 2+ap'I4

d. Intermediate polynomial space of degree p.

(2.12) P()) = O ' + }
ij k=0

Remark 2.2. Let P denote the master square-element. We note that:

(2.13,a) ,(.)÷ €()=,,()

(2.13b) S2(÷) =

while for p > 3 all three spaces are distinct.

We let 5 ,rr := fl n e,(f). The finite element solution Uh of the model
problem satisfies: Find Uh E ShP,rD such that

(2.14) BO(uh,vh ) = Ln(vh) V vh E Srh,rD

We let eh := u - uh denote the error of this approximation. We assume that one
of the above mentioned spaces is employed with p _ 1.

2.2 The class of locally periodic meshes

We now present the definition of a special class of locally periodic meshes. In
the following Section we will prove several results for the asymptotic behavior of
the error for these grids. Let us consider a locally periodic grid defined as follows:

Let O<H <HO u 0 o- o ,zo2)Ef,

(2.15) S(ie°,H):= {=C(Xz2)1 Ixi-x°I<H, i=1,2}
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and assume HO is sufficiently small such that 3(0o, HO) C f(. Further, let 7 be a
set of multi-indices (i,j), m(0-) 1 (I,1 _3)E

(2.16) c(w€ui),h) : (=u('1),h) C S(u, H), (i,j) E 7

be the set of the h-cells (or cells) which cover exactly S(u°, H) i.e.

(2.17a) U 6(w('4),h)= ,(LO, H)

(2.17b) c(w0"•),h)fnc(u(''j,) = O for ('i,ji) (i2 ,j 2 )

We will refer to S(v°, H) as the subdomain of periodicity of the mesh centered at
00. Denoting by

(2.18) <:-{(z,,z)I IziI<1, Iz1 < 1}

the unit- (master-) cell Z, the h-cell is an k-scaled and translated master-cell.

Let t be a triangular mesh on the master-cell (the master-mesh) and th(,-¶) be
the mesh on c(w('j), h) which is the scaled and translated image of T. We will
consider the family T of locally periodic meshes. Let Th E T and TI,(u0 , H) be the
restriction of T. on S(w*, H) and Th(•) the restriction of Th(w°, H) on c(w(%'), h).
We assume that T(¶j) = ) (i,j) E 7 i.e. Th(u°, H) is made by the periodic
repetition of the h-scaled master mesh. An example of such a mesh is shown in
Fig. la where the master-mesh is shown in Fig. 2(a). Note that the parameter 2h
has the meaning of the length of the cell side in S(w°, H). In 9) - S(w0 , H) it has,
in general, nothing common with the size of the elements used.

Below we will study the asymptotic properties of the error in the locally periodic
mesh for h-cells well within the interior of S(w0 , H). By asymptotic properties we
mean the properties in the limit as h tends to zero. Moreover, it will be assumed
that H > Cha, with 0 < a < 1 i.e. the subdomain of periodicity of the mesh in
the neighborhood of a*, S(wo, H), can shrink to zero but at a slower rate than the
size h of the cells. Nevertheless, for simplicity, we will assume that H is fixed and
independent of h. We underline that changing h does not change the geometry of
the mesh in S(u0 , H).

8



3 Theoretical setting

3.1 Preliminaries

We will here for simplicity address only the case of Poisson's equation (K" = $,
in (2.1)). Nevertheless, the results could be easily generalized to the general setting
for orthotropic medium.

The solution of the problem is understood in the sense of (2.14). In (2.7) we
defined the energy-norm which, for K unit-matrix, is

(3.1) IllulI, = II IVul Ila

where III is the usual L2-norm. The fact that we deal in some cases with the
se inorm instead of the norm will not play any role. For a specified domain S C A1
we will also use the norms (seminorms) III ills, I1" lls with obvious meaning as
well as the notation Bs(u,v) with lI I Jul11 := Bs(u,u). Given a function u and the
multi-index a := (a1 ,a 2) we define

(3.2a) /T'u := -l Ict' Ct3 a]:=a + Ct2

(3.2b) (Vku)(v) (= ID-u12)(z)]' k> 0, integer
10I=h

and hence we can write

(3.3) lllulll.�1 = 1 DII1 = II IVul II2 = llV 1UlS•

101=1

Further we denote by I I the usual L--norm and II u f - max I Du I

3.2 The basic properties of the finite element solution

Let HO > H > H, > H2 > H3; we have f0 D S (z0, HO), S (wo, H°) D S (aO, H),
and S (e°, He) D .1 (ae°, H,.), I < m. We will deal with S (az, HI),t I- 1, 2,3, with

various He < H. We will assume that H, are such that

9



(3.4a) S(z°,HI)= U •((),h), I = 1,2,3.

where

(3.4b) J,: (i,j) : c4e('j),h) C- $(z°,Hj)} .

This means that S (u°, He) can be partitioned into the set of cells. In Fig. lb we
give an example of the subdomains S(w0 ,H), S(.°,HI), I = 1,2, for the mesh
shown in Fig. la.

We will make the following assumptions about the exact solution u:

Assumption I

On 9 (uo, H)

(3.5) jDl j <K<oo, 0_<Ial.p+2

Remark 3.1. Assumption I states that the solution is smooth in the subdomain
S(z°, H) i.e. the subdomain should be sufficiently far from boundaries, material-
interfaces and points where the data are rough.

Assumption II

If a. := (Dau)(wO), a=(a l ,a 2), Ia1:p+l then

(3.6) R 2 = a ,>0

Further, we assume that the mesh T(fl, h) is such that:

Assumption III

On S(w0 ,H 2 ), H2 < H1 < H < H0

(3.7) IIehlIsc.o,H 2) - Ch"H2

with P 2 (p + 1) - e, where 0 < c < 1 will be specified later, and where C is
independent of T(0, h), H 2, but it depends on K and R.

10



Remark 3.2. We do not assume that u is smooth in fl outside of S(w°, H). For
example, fl can have a boundary with corners (as in Fig. 1(a)) and hence u can
be unsmooth in the neighborhood of these corners. Nevertheless assumption III
makes an implicit requirement on the (refinement of the) mesh in the neighborhood
of these corners. If u is smooth in a convex n and the mesh is quasi-uniform then

(3.8) I eh In -5 ChP+1 Ilnhl" I D'u fl, r > 0

and hence in the assumption III we can take P < p + 1 arbitrary.

Remark 3.3. Assumptions II, III imply that the principal part of the error in
S( 0 °, H2 ) is related to the non-zero (p + 1)-derivatives of the exact solution at 00.

In the following we prove a series of lemmas and the theorems. We uill assume
everywhere below that H1 is sufficiently small (depending on K, R) independent
of h. For simplicity we will address explicitly only the case of triangular meshes
although the arguments are general.

Lemma 1.

(3.9a) IllehlIlI(.(i.,),h) _> Ch'' 1  V c(u("'j),h) C S(w°, HU)

(3.9b) II eh Ic(v(iJ),h) -- Chh V c(u('), h) C S(-°, H1 )

(3.10a) IllehIIls(.oH) > ChPH , i = 1,2,3

(3.10b) 11 eh IIS(.0,H,) Ž Chp , i = 1,2,3

where C depends only on H1, R, K and the master-cell mesh, but is independent
of h.

Proof Using assumptions I and II the lemma follows immediately from the fact
that VP+lu is bounded below on S(r 0 , HI), and therefore on c(w(ij), h), by a
positive constant, which depends on R, H1 and K. E3

Remark 3.4. The lower estimates in lemma 1, as given above, hold only for the case
of triangular elements of degree p (the span of the shape-functions in each element
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includes all monomials up to degree p). In the case of quadrilateral elements the
span of the element shape-functions is larger and includes monomials of degree
greater than p (see [31]). Hence here we have to understand lemma 1 in the sense
that (3.9a), (3.9b), (3.10a), (3.10b) are valid for the solutions which are not in the
span of the element-space.

Remark 3.5. We also remark that in (3.9b) we have

(3.11) ax I8eh ) ChP

and not

(3.12) I e > ChP i = 1,2.

Nevertheless later we will assume that

(3.13) I.I eh III u('.3)hC

with a uniform for the entire class of functions under consideration. This can be
achieved by imposing additional assumptions on a. in assumption II.

Lemma 2. There is a polynomial Q of degree p + 1 on S(z°, H2), H2 < H,

(3.14a) ItIJU - QIIIs(.o,H 2) < C Hj+2

(3.14b) 1 D'(u - Q) I 5(.H2) - CH2+2-11, 0 < aIl ___ p + 2

Proof. Q is the Taylor expansion of u up to degree p + 1. E]

Lemma 3. Let Q be a polynomial of degree p + 1 defined on S (z°, H) and let Qh
be its interpolant of degree p on the mesh Th (wo, H). Denote

(3.15) p:= Q - Q•h

12



then p is a periodic function on S (so, H) with period 2h, p E H I (S(z°, H)), and
hence

Axi)+ h, Z2) = - kXV, 12-
(3.16)

P(,"+ A) = p(I,,('j) - h), Izi - Z("')i < h

Proof. The lemma follows immediately from the observation that the (p + I)-
derivatives of Q are constant in S (w0, H). Note that we are dealing with elements
which are able to reproduce any polynomial of degree p on c(o('j), h). 0

In the following we will consider polynomials of degree (p + 1)

(3.17) Q(MI,,:=) , bo (xi -x°)O(x2 - x*2)"2, a =(a,,a2 )
o<IaI:p+l

and we assume that

(3.18) 0< is• 2 ~,4o
Hai--p+1

Lemma 4. Let p be given by (3.15); then

(3.19a) C1h 2-j - II< Pll•,.,•,, _ e2 h" 2 - , j 0, 1

(3.19b) Ch'+l-j < I V'P I .,,,.,) _ C2h+-j = 0, 1

where C1, C2 depend on it and /&2 and the master mesh but are independent of h.

Proof. The lemma follows from the basic properties of the interpolant, (3.18) and
lemma 1. Q1

We now define the periodic finite element problem on c(x(i'), h). Let

(3.20) H,,ua(c(z('j),h)) {= u E H' (c(a ('-), h)) : u satisfies (3.16)}

and

13



Let Vo E H,'.. (c (.(O), h)); then we denote z4 E Sih.• (c (i('), h)) such that

(3.22) BC.(,)h) (zrvtuh) = Bc(=i,)h) ($0,uvh) V Vh E Sh,,3 ff (c(2('J), h))

and

(3.23) ( W, - Zj)= 0

The function zh will be called the periodic finite element solution. Let us remark
that by scaling and translating the mesh we can solve the finite element problem
in the master cell using the master mesh.

Lemma 5. Let V E H13L (c(z('J), h)) and let 0 be the periodic extension of W0 on

S(z°,Hf), He < HI, I = 2,3. Further let il be the periodic extension of zl' on
S ( , Hi). Then

(3.24) Bs(.o,zr,) (i,vii) = Bs(.om,) (0,vh) V vh E Sr,,o (S(w0,H 1 ))

where

(3.25) Shr0 (S(wo, HI)) {= Vh E SR(fl) : Vh has its support in (,He

Proof. We will write

(3.26) BS(zO, H)(ihVh)= j B(.(.j),h)P(hV,4)

(ij)E-Y4

Using the periodicity of V and • we have

ZBc.u'ij),h) (ih,Vi&) = Bc~ao~h) (zhv i:vh(w + ())-

(3.27)

= BcwO~h) ($ý, Vh~( +W
(iJ)•Ev4

14



Realimng that

(3.28) E vi,(u + e('.)) E Sr,.. (C (0, h))

we get (3.24). 13

Let us now use jp = p, where p has been defined in (3.15). Then by lemma 4
we have (P E HP'= (C(M('J), h)), p = and denoting

(3.29) 0:= i-

we have:

Lemma 6.

(3.30) Bs(.o.H,) ('k,vh)= 0 V wh E Sho (S(.o, H,))

and

(3.31a) C3 h' 1 -jHt IVO IIS(.oHt) <C_4 hP+'-jH, j O, 1

(3.31b) C3 h'p"-'<- I VIP I s(.oH,) _ C4 h+'I-tInhl', j=0, 1, r>"0

where C3, C4 depend on PI, P12, H1 and the master mesh.

Proof We have Bs(.oHn,) (p - ih,,,h) = Bs(.o,H,) (p,,,) - Bs(.,Hc) (EZVh) = 0 by

lemma 5, and (3.30) is proven.

From (3.22) and lemma 4 we get

(3.32) 1II•ll) 1 ,h) = IIIp - ZII I (ll i.i),h) _ IIIPlll<.('),h) < Ch'P1

and applying the duality principle we get

(3.33) JJll,,cz.,h) = IlzZ - PII•(',),h) - ChIIlpIIl<J,•Lh)

15



where C is independent of p and h. Realizing that there are Hj/h 2 cells in S(u0 , Hj)
we get

1112 < Ch20,P+2) H12<CjhP'

I1N1OR.,) < - '' h2•-<cl'.,

which proves the right-hand side of (3.31a).

Because Y'"+Io = C'(pl) > 0 on every T E T( j), it can be readily seen that

II••bl•.•J•.> _ CC'(I,,)hP+'f

I1 , 1 1 .• ,,• , , -C C '( I S ,) h ,p + 2

from which the left hand side of (3.31a) follows.

The proof for the norms I, ) • f1 follows analogous steps using the standard
theory of LO estimates. 0

Lemma 7. Let Q be a polynomial of degree (p+ 1) on S(w°, H2), H2 < H1 and

Qh E Sh (S(uo, H2)) such that

(3.34a) inf IIIQ - XIIIS(.*,H,) = IIIQ - QhJIIS(,0,H2 )

(3.34b) s- Qh) = 0

Further let H3 = 7rH 2, 0 < r < 1, d2 := H2 - H3 = (1 - r)H 2 . Then

-1 AChH2

(3.35) II Q - Q1 IIS(.O. ,) =11 IIS(.O.H 3)(1 +

where JAI < 1 and C is independent of h, H, and ,.

Proof. We have Q - Qh - = iZ,+ QIT - Qh E Sr(S(w°, H2 )) and

Bs(co,H,)(Q - Qh - 4 ', v) = 0 V vh E Sh.0 (S(O', H 2 ))

16



and using Lemma 9 (see below) we get

11 Q - QO% - 10 &s.') <•IQ - Q1, - OItls(.qX,) <-

A-< C IQ - Qhlls(..0, 2) + I#'Ills(.I,)) _< CIIpIIs(.4,,)

The above follows by using the duality principle (S(w0 , H2 ) is convex domain) and
by observing that

IIIQ - QhIIIs(oRO') h IIIQ- Q' TIIIs(.w 2) = IIIp2Ils(.. 2)

and that

II lIS(.*,5,) = III, - h, l- IIIPIIIs(.e,n 2)

Moreover IPIIplIs(.o, 2) -< ChAH 2 and thus

(3.36) II Q - Qh- II5(.0,H,) < c hP+'H 2

From lemma 6

II ,/' IIs(8.,) -> Ch

and hence

II Q - Qh - ý' IlS(uOHs) - C -• 2 IIS(.,,H3 )

Moreover

II Q - Qh IIs(.0,H3) - II IS(.,b 3) + II Q - Qh - 0 IIS(.0,H,)

11 Q - Qh IIS(uO.H 3) Ž 04 IIS(u.,H 3 ) - 11 Q - Q" - 4' IIS(uOH 3)

and hence

II Q - Qh IIS(wO,H,) = I14' IIS(*O,H 3) (1 + AC h --

which completes the proof of the lemma. 0
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We will now summarize the theorems on interior error estimates which we use
in this Section. For the proofs see [38].

Lemma 8. Let a E S(:°, Hi ), d, :=H, 1 - H, > Ch. Let uh E Slr(S(o, H1 )),

(3.37a) BS(..&,_.)(u - Uh)- 0 V v E SlZo(S(.°, H_.1))

Then

lVe&(u)I< C min X IIS(u(.H.. 1) + I -X I S(.O)

(3.37b)

C
+ ,II, - UhIIS(u.,H.,_)

Lemma 9. Let wlh E Si.(S(WOHi_1 )) and

(3.38a) BS(.oj-,_)(Wh,vh) = 0 V va E SEPo(S(0°,H•_ ))

Then

C
(3.38b) II •h lI~s(..,H> -< - II,, !l w,,,,ls .,,_)

Let us now prove the main theorem of the paper.

Theorem 1. Let H3 < H3 < H1 < H < H' and the assumptions I-IIl hold with

(3.-3 9) C, H3* :h 5C. H3, 6p+1V a=p l-,CV
6p+

(3.39 C1H• h<CH, a-6p F= (6-p-I-1)'/--l-,-.

Then for any a E S(z0 ,H3)

(3.40) 1 - _()I + ACh+

with [I1 < 1 and C independent of h.

Proof: Let H3 = (1 - h 2)H,, H2  < H1 . We have
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e. = U - u1, = u - Q + Q - Q'% + Q1 - u1,

and hence

II C,1 IS(..",H) _< IIh - Qh - (U, - Q) IIS(-.M.) + H Q - Q1 iscuH,)

Let us estimate 11 uh - Q, - (u - Q) Is(..H,)- Noting that

Bs(9,.)(~k- Q.- (us - Q) )= 0 V v E SP. (S(uo, H,))

and using lemma 8 we get

IIh - Q1 - (u - Q)fC min, <( 11, U))(ll , - Q - x

1 C

+ i- Q- x I S(.O.,)) + -Iluh-Qh,-(U,-OQ)llsf.,H, )

Using for X the interpolant of u - Q we get

II,, - Q- xlls(.,H,)<_5CH~hP, u •- Q - x Is., <CH2 hP+'

Further we have

"luh - Qh - (U - Q)lls(.a',H. _< I , -"UllS(*,'Hl) + QQh - Qlls(... 2)

and using assumption III, the duality principle and lemma 4 we get using lemma 2

Iluh - Qh - (u-Q)IIs(.0 ) - C(hOH 2 + hl'H2)

and hence

II h - Qh-(- Q) IIS(&.,H,)< _C(H 2hP + H2-----'+ h + _ Ch
d2

where

, + p+1-2m, •---4y, p+l-- -4v

a a
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F!rom lemma 7 we get

II Q - Qt s(.,0) = II S IS(.)(1 + Ch- -4.

where J.1 < 1. Moreover from lemma 6

C, h, _Ip I(. < c~h,

Hence

e eh IIs(.,,H3) -5 114 IIS(IP.R3) (1 +c h,'-)

and analogously the other inequality so we get

IIe,% Is(NGo. 3) =145I(uO,H5)(1 + Ah

where

-=mzin{ 1-2v, ---- 4v-p, 1---4v}

Assuming that > p + 1 -

1 _ 6p+1 1

O<e<o0 , =l+----- 6p 6 (6p+1)

we get with ao = v,

1 6p >O0o' 1 2v > o,
a 6p+ -1 I

1 4 6p 4
a---4z-p=p+1-e 6p+1 6 (6p+ 1) -

1 36p + 4 2 1

-6 (6p+1) -6(6p+1) _> 6 (6p+1) 0-

1---4v 6p 4 6 (6p + 1) - 36p- 4 2 2
a 6p+ 1 6( 6p+ 1) 6 (6p+ 1) 6(6p+ 1) Ž-

when
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1

6(6p~l) > 0.

We thus have

11 eJ, IIS(.x.J) = II IIs(..I )(1 + ACh'°)•

Further we have for any a E S(w°, H3 )

o() - Q) - (,%h - Qh)) () + NLQ - o,)(,)

and so proceeding in the same way we get

•- )= + ACh'.+.

0
Remark 3.6. Let us now comment briefly on the meaning of the theorem. We will
assume that the mesh is periodic in a small region in the interior of the domain and
that the solution is smooth. Outside the square we assume neither that the mesh
is periodic nor that the solution is smooth. We only assume that the pollution in
the periodic mesh-subdomain is controlled. Then the superconvergence is directly
related to the function ip which can be computed in the master-cell.

Remark 9.7. Note that the fact that we have used square cells is not essential. It
is only essential that the mesh is translation-invariant. Let us also underline that
the assumption that K is the identity matrix was made only for simplicity. The
theorem holds for general matrix K, which is allowed to vary smoothly throughout
the domain.

Remark 3.8. Theorem I allows us to make a computer-based proof of the existence

of the superconvergence points for the case when F(u) = au (see introduction).

a 
60

We see from (3.40) that if and only if a- jb(z) = 0 we have

(3.41) Le w ChP'., q. > 0

and C is independent of h. Further we know from the construction of 0 that (after
scaling) the function 0' is independent of h. Hence the relative position of u in

8
Tr where --- (m) = 0 is independent of the mesh. On the other hand with the

exception of very special cases we have
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(3.42) EIChp k>0

In this case (which is always assumed in the classical superconvergence theories)
our theorem says that a powinu sn the element T is a pCeconvelence point

for F(s) = -- if and onul if =0.) = O Because we ae interested in a U-

superconvergence point for U being a sufficiently large set of solutions, the condition
(3.42) is not restrictive.

Remark 3.9. We discussed above only the heat-conduction problem. We will
address the superconvergence for the elasticity problem in a forthcoming paper
[30].

Remark 3.10. Although in general the superconvergence points do not exist, a re-
gion of points where the accuracy of the gradient is much larger than the maximal
error in the element still could exist. This question is addressed in forthcoming pa-
pers ([28], [29]) in which we introduce and analyze the notion of u-superconvergence
points, 0 :<i <5 1. The case V1= 0 coincides with the classical superconvergence
(see also (1.4)).

4 The methodology for finding the supercon-
vergence points

In this paper superconvergence is treated as local behavior and hence we
are making assumptions about the local behavior of the solution in the interior of
the domain. We will consider the class of solutions which are locally smooth in
S(u°, H), namely,

(4.1) UG := {u E H1(f)I IDu I s(.e,X)< K, 0:5IaI5p + 21

where S(wO, H) denotes an interior subdomain of interest in which the mesh is
locally periodic as described above (the subdomain must be a finite distance away
from the boundary and points of roughness of the source term). In many instances
we are only interested in the subclass of solutions in UG which are "harmonic"
(we say that u is "harmonic" if it satisfies the homogeneous differential equation),
namely,

(4.2) U"a" := {u EUG I £(u)= 0 in fl}
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We may also assume that the functions are "harmonic" in a subdomain which is
slightly bigger than S(z°, H) and which includes S(a°, H) in its interior.

In the previous Section we proved that we can obtain the asymptotic values
of the error for any smooth solution in the interior of a periodic mesh-subdomain
by solving a periodic boundary-value problem, using the master-mesh T over the
master-cell 2, with data obtained from the local (p + 1)-degree Taylor-series ex-
pansion of the exact solution. Based on this result we will construct a numerical
procedure to determine the superconvergence points (which may not exist) for a
given class of smooth solutions by employing the corresponding class of (p + 1)-
degree monomials.

a. The classes of (p + 1)-degree monomial solutions.

Let us assume that for a given locally periodic grid with corresponding periodic
master-mesh T, given material orthotropy and given class of smooth solutions U
we consider

(4.3) {QIQ ,) - -P+1
Z2) akQk(Z:1 Z2),Q( 11 )

h=1 L=O

the class of (p+ 1)-degree monomials which occur in all (p+ 1)-degree Taylor-series
expansions about z0 of functions from U. Here Qj t, k = 1,... ,nd denotes a set of
linearly independent monomials which span Q. For example let us assume that U
is the class of smooth solutions UG given in (4.1); in this case we may choose

(4.4) Q,1(z1 2 z) 2zr+kz-, 1 < k < nd = p + 2

and we obtain the class of all (p + 1)-degree monomials QG.

In many practical applications we are interested only in the class of "harmonic"
solutions U"j-" given in (4.2). Then Q is the two-dimensional space of "harmonic"
monomials and will be denoted by Q"H'. For example in the case of Laplace's
equation (Ki = $,a , k,I = 1,2) we have

2

(4.5a) {QHI Z I :1 Z2). 2 .(I 2
k=1

(4.5b) QI(: 1 ,z 2) = Re(zP'), Q2(: 1 ,z 2 ) = Im(z 1+'), z = ZI + iz 2

Note that in this case we do not use the quotes since the functions are harmonic
in the classical sense (i.e. they satisfy Laplace's equation).

23



b. The error in the periodic finite-element solution.

For a given exact solution Q E Q, material-orthotropy matrix K, periodic
grid t we obtain the error in T by solving the following periodic boundary-value
problem:

Find z, E Hh(2) such that

(4.6a) B(ZVh = B,(p,,vh) V VA E I%,PBR(2)

where p, SIPR(E) are defined in (3.15), (3.20), respectively, and

(4.6b) ZI=P.

and we obtain the error

(4.7) p-Z•.

Let F(u) denote the solution-quantity of interest; for example below we will
consider F(u) = or F(u) = qK(u) = +

c. Superconvergence points of F(u) for the class Q.

We will say that * is a superconvergence point in the element T E T for the
functional F(u) and the class of solutions Q if

(4.8) F(V&)(u) = 0 V Q E Q

Here , is the error which corresponds to the solution Q.

To determine the superconvergence points for F(u), in T E T for the class Q we
define the zero-contour for F(4A) corresponding to the linearly independent mono-
minials Qj, i = 1 ... , nd in the element T E T and for the material-orthotropy K

(4.9) CF(.) (Q,;Tr,t;K) : = f(mE T1 F(,b') (a) =0 ,

where {Qj }!}• is a basis for Q and 0i denotes the error corresponding to Qj. The
set of superconvergence points in the element r is given by
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(4.10) lp(.)(Q•;,;/K) := n Cp.)(Q,;T,it;K).
i=1

In the implementations the contours C,(.)(Qi; r, T; K) were approximated by
piecewise linear continuous lines in each element r using a background mesh of
linear triangles. The initial approximations of the superconvergence points were
obtained from the intersections of the approximate contours. In order to find more
accurate values of the superconvergence points we constructed the function

(4.11) Gp(.) (Q;,-, T; K) : F(%b)[

The superconvergence points, if they exist, are located at the zeros of thiE function.
A minimization algorithm was employed to improve the initial approximations of
the superconvergence points obtained from the intersections of the approximate
contours by minimizing GF(.).

Remark 4.1. Note that the superconvergence points for the functional F(u) and
the class Q may not exist in the element r i.e. the set X()(rQ;, T; K) may
be empty. This is indeed the case when the function Gp(, does not have any
zeros. In the case that Q is the class of harmonic monomials, we have only two
families of zero-contours which, in general, will intersect. Thus we can always find
superconvergence points for the class of harmonic solutions.

5 Numerical study of superconvergence for pe-
riodic meshes of triangles and squares

We will now demonstrate that, by using the methodology outlined in the
previous Section, we can find the superconvergence points for the components of
the gradient (or the components of the flux in the case of orthotropic material) in
the interior of periodic meshes of triangular or square elements. In the numerical
examples we will study the following questions:

1. For periodic meshes of triangles with various mesh-topologies and elements
of degree p where are the superconvergence points for

a. the class of harmonic smooth solutions;

b. the class of general smooth solutions?
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2. For meshes of square elements of degree p where are the superconvergence
points for

a. the tensor-product space &(P-P)(f);

b. the serendipity space J'(÷);

c. the intermediate space §,P(^)?

We will answer these questions using the numerical approach.

Remark 5. 1. We remark that for unsmooth solutions the superconvergence points
do not exist, in general.

Remark 5.2. Although in Section 4 we addressed only the case of triangular ele-
ments the theory holds for the general element-spaces we address below.

5.1 Determination of the superconvergence points for pe-
riodic meshes of triangles

The majority of the results for the superconvergence points for the triangular
elements in the literature are given exclusively for the Regular pattern (which is
also known as the three-directional mesh and is shown in Fig. 2a) and linear and
quadratic elements; see for example [11], [13], [15-26]. To our knowledge there are
no systematic results reported in the literature about the superconvergence points
for other mesh-patterns and p Ž_ 3. Here we will employ the numerical approach of
Section 4 to find the superconvergence points for all the patterns shown in Fig. 2
and for elements of degree p, 1 < p :_ 7. Moreover we will find the superconvergence
points for the harmonic class and the general class of smooth solutions.

We determined the superconvergence points for the z1 -derivative of the gradient
for the class of harmonic solutions by locating the points of intersection of the
contours C a. (Q47;T, t;I), i = 1,2. We then checked if these points are also

superconvergence points for the class of general solutions by computing the values

of the z1 -derivative of the error, 2t, corresponding to the linearly independent

monomials which are needed to complete the basis of the harmonic space QH into
the basis of the general space Q0 .

In Table I we give the set of superconvergence points X . (UK; r, T; I) for the

class of harmonic solutions and for the periodic meshes T shown in Figs. 2a, 2b, 2c
and the element T shown with gray-shading in these Figures (note that the points
are the same for all three patterns). The superconvergence points for the class of
harmonic solutions for the element T'1 (resp. r2 ) in the Criss-Cross pattern shown
in Fig. 2d are given in Table 2 (reap. Table 3). In Tables 4a-4d (resp. 5a-5b) we

26



indicate which points for Table 1 (reap. Tables 2, 3) are also superconvergence
points for the class of general solutions.

In Figs. 3a-3d we give a schematic example of how the superconvergence points
for the class of harmonic solutions in the cubic elements and the four mesh-patterns

are obtained from the intersections of the zero-contours for 2t for the two linearly-
am,

independent harmonic monomials of degree (p + 1). Figs. 3a-3d also show how to
interpret the points given in Tables 1-3 for all the elements in each pattern. In
Fig. 4a we show the contours of zero-error in the zl-derivative for the two harmonic
monomials for the shaded element from the Regular-pattern while in Fig. 4b we
also included the zero-contours for the monomials which are needed to complete
the harmonic basis into the general one. We note that there is only one point which
is common to the zero-contours of all the monomials, namely the midpoint of the
side of the triangle which is parallel to the :1 -axis. As indicated in Table 4a, this
point is the only superconvergence point (for the class of general solutions) for the
X1 -derivative in element 7r in the Regular pattern.

We make the following observations:

a. For the harmonic solutions there are always superconvergence points for the
W1 -derivative for all the mesh-patterns. The number of the points increases
with the degree p of the elements.

b. Only vety few of the superconvergence points for the class of harmonic solu-
tions are also superconvergence points for the class of general solutions. For
example

(i) For even p's, p > 4 there are no superconvergence points for the class of
general solutions.

(ii) For the odd p's, p Ž_ 3 and the Regular and Chevron pattern there is
only one superconvergence point for the class of general solutions. It is
located at the mid-point of the side parallel to the x1 -axis.

(iii) For the Union-Jack pattern there are no superconvergence points for the
class of general solutions for elements of any degree p.

c. The superconvergence points for the z 2-component of the gradient for the
mesh-patterns shown in Fig. 2 can be obtained using symmetry arguments.

We now demonstrate that when the points given in Tables 1-3 are employed in
model computations the superconvergence of the cl-derivative can be observed for
relatively coarse meshes. To study the superconvergence in actual computations
we employed the discrete-norm suggested in [8,91, namely

n up a eh . . 211
(5.1) E : ,( e
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Here {�,}N= denotes the superconvergence points in the triangles of the mesh
which participate in the definition of the discrete norm.

We considered the domain 0 = (0,1)2 which is meshed by a uniform-grid of
elements in the Regular pattern. We computed the values of the discrete norm us-
ing points from the elements in the subdomain flo = (0.25,0.75)2. We considered

111 1
meshes with cell-size h = 1 , 3"2 and we computed three types of discrete
norms E', E", E'. In particular E' includes the superconvergence points given in
Table 1 for each element in 90, E" includes only those points for each element in 00
which are superconvergence points for the zj-derivative for the class of general so-
lutions (see Table 4) and E' includes the points from the elements in 00 which are
superconvergence points only for the class of harmonic solutions. Thus we expect
to see that all three norms are superconvergent if the exact solution is harmonic
while only E" is also superconvergent for solutions which are not harmonic.

In Table 6a (resp. Table 6c) we give the values of h- 3E', l-3E", h-3 E'm
(resp. h-4 E', h-WE", h-'E') computed from the solution of a Dirichlet boundary-
value problem in 0 using quadratic (resp. cubic elements) with data consistent
with the harmonic solution uH(XI, 02) = sin(wrzj)sinh(T•2r). We note that as h
is subdivided the values h- 3 E', h-3 E", h- 3E"' (resp. h-4E', h- 4E", h-'E"') con-
verge to constants; this shows the superconvergence of all three versions of the
discrete-norm.

In Table 6b (resp. Table 6d) we give the values of h-2 E', h-3 E", h- 2 E'"
(resp. h- 3E', h- 4E", h- 3 E"') computed from the solution of a Dirichlet boundary-
value problem in f using quadratic (resp. cubic) elements with data consistent with
the solution uG(z:, 22) = sin(vzl) sin(WrX2) (which is not harmonic). We note that
as h is subdivided the values of h- 2E', h- 3E", h-2E.. (resp. h-3E', h- 4 E", h- 3 E")
converge to constants; this shows that only the values of E" are superconvergent
in this case.

5.2 Determination of the superconvergence points for pe-
riodic meshes of squares

We also employed the computer based approach to find the superconver-
gence points for meshes of square elements. In particular we studied the effect
of the choice of the finite-element space (tensor-product, serendipity, intermedi-
ate spaces as defined in (2.9), (2.10), (2.11)) on the superconvergence points for
the z:-derivative. For the tensor-product space it is well known that the points
of the (p x p) Gauss-Legendre product rule are the superconvergence points for
the ol- and o2-derivative simultaneously for elements of degree p (see for example
[9]). To our knowledge, superconvergence points for the serendipity family and the
intermediate have not been reported in the literature for p Ž 3.
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We used the numerical approach to determine the superconvergence points for
the x1-derivative for the case of Poisson's equation. We observed the following:

a. For the tensor-product and the intermediate family of element-spaces, su-
perconvergence of the z1 -derivative occurs along the constant ; 1-Gauss lines
which pass through the Gauss-Legendre points of degree p along the i,-axis.

b. For the serendipity family the superconvergence points for the z1-derivative
are given as follows:

(i) For p = 1,2 and the class of general solutions the points are exactly the
same Gauss-lines as for the tensor-product and the intermediate family.

(ii) For p = 3 and the class of general solutions four superconvergence points
and one superconvergence line (the line zi = 0) were found, as reported
in Table 7 and shown in Fig. 5. For the class of harmonic solutions three
superconvergence lines, which are shown with thick continuous line in
Fig. 5, were obtained.

(iii) For p >_ 4 there are no superconvergence points for the class of general
solutions. For the class of harmonic solutions several superconvergence
points exist; these points are listed in Table 7 and shown schematically
in Figs. 6a-6d for p =4, 5, 6, 7, respectively.

To demonstrate the superconvergence of the x;-derivative for the points in
Table 7 for p = 3 and 4, we considered a Neumann boundary-value problem in
S= (0,1)2 with data consistent with the harmonic solution UH and the general
solution UG. We computed the discrete norm E using points from the elements "n
the subdomain QO0 = (0.25,0.75)2.

In Table 8a we give the value of h-E where the (3 x 3) Gauss-Legendre points
from each element in fl0 were used in the definition of the discrete norm E; the
Neumann problem with data obtained from the general solution uG was solved
with elements of degree p = 3 using the tensor-product space and the intermediate
space. We observe that for both spaces the values of E are superconvergent, as
expected.

In Table 8b we give the values of E and h-SE (resp. h- 4E) computed from
the finite eit-ment solution of the Neumann problem with data consistent with the
general sol. ion uG and using the (3 x 3) Gauss-Legendre points from each element
in 110 (resp. the four points given in Table 7 and the point (0,0)). We note that the
values of E are superconvergent only when the points from Table 7 are employed.

In Table 8c we give the values of h-5 E (resp. h- 4E) computed from the finite
element solution of the Neumann problem with data consistent with the harmonic
solution uH (resp. the general solution UtG). Here we used quartic serendipity finite
element space and the points given in Table 7 for p = 4. We note that the values
of the discrete norm E are superconvergent only in the case of the harmonic.
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5.3 Effect of the material orthotropy on the superconver-
gence points for the flux

In the above examples we gave the superconvergence points for the components
of the derivative of finite element solution for Poisson's equation. We now study
the effect of orthotropy on the superconvergence points.

We considered square cubic elements (p = 3). We let the material-orthotropy

matrix K = K(O) where K(O) has ratio of principal values K, = 10 and 9 de-
Kmni

notes the angle (measured counterclockwise) between the z 1 -axis and the principal-
axis of orthotropy corresponding to Kmi. . We considered the class of "harmonic"
solutions U"H- and the corresponding space Q'H" of functions which can be ex-
pressed as linear combinations of the "harmonic" monomials

(5.2) Q-H"(x"t, z,) = Re(~z'P+), Q;M"(-"-',,x") = Tm(z"* 1 ), z" = z" + x""

Here zx, zX denotes the axes of the coordinate-system for which the differential
operator is transformed to isotropic i.e.

2 8g(i OU I4.- 2 " 8u
( 5 .4 a ) 

01(. ." 0 2+ "

jEýj V98i 2)

where

(5.46) ""X7 "'2 "- U(I 2

In Fig. 7 we give the zero-contours C,(u)(Q:H";-r,T;K), i = 1, 2, and the

superconvergence points for the tensor-product space §(03) and the intermediate
space kS. We note that the zero-contours for the two-spaces are identical and the
superconvergence points do not depend on the material-orthotropy. (The super-
convergence points for the components of q(u) for elements of degree p from the
tensor-product or the intermediate space are located at the (p x p) Gauss-Legendre
points in the element.)

In Fig. 8 we give the zero-contours Cq "H)(Q'H"; T, t; K), i = 1, 2, and the super-
convergence points for the cubic serendipity element and various grid-material ori-
entations. We note that, in general, the points depend on the material-orthotropy

(on the ratio ! and the grid-material orientation 0). This dependence should
Kmj

also be expected for serendipity elements of higher-degree (p Ž 4).
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In Figs. 9a-9h we give the zero-contours C., (Qi'; r, T; K), i = 1, 2, and su-

perconvergence points for quadratic triangular elements and various grid-material

orientations E [0,90]). In Figs. 9a-9h we show the zero ontours

and superconvergence points for the element r (shaded gray in Fig. 2a) for the
Regular pattern. From the Figures it is clear that the location and number of
superconvergence points depends on the material-orthotropy. Note that for the
given orthotropy and 6 = 00 there are two points of superconvergence; for 8 = 900
there are four superconvergence points while for any of the grid-material orienta-
tion there is only one superconvergence point. Based on the above results we can
conjecture that for meshes of triangles the number and location of the supercon-
vergence points for the "harmonic" class of solutions depend on the grid-material
orientation.

6 Summary of conclusions.

1. We presented a computer-based methodology which can be employed to de-
termine the superconvergence points for the derivatives in the interior of any
locally periodic mesh of triangles or squares of any degree p.

2. The methodology takes directly into account the topology of the mesh, the
element polynomial spaces and the nature of the solution.

3. We employed the methodology to determine the superconvergence points for
several cases of practical interest. We made the following observations:

a. For the class of harmonic solutions the superconvergence points always
exist for any mesh-pattern and type of elements.

b. For the class of general solutions the superconvergence points may not
exist.

c. For the square elements and tensor-product and the intermediate element-
spaces of degree p the superconvergence points are the points of the
(p x p) Gauss-Legendre product rule.

d. For square elements and the serendipity space of degree p the super-
convergence points depend on the class of solutions and the material-
orthotropy for elements of degree p > 3.

e. For triangular elements the superconvergence points depend on the
mesh-pattern, the class of solutions and the material-orthotropy.
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List of Figures

Figure 1. Locally periodic grids. (a) An example of a grid with a locally periodic
subdomain meshed with the Regular pattern shown in Fig. 2a; (b) The subdomman
S(°, H) with the subdomains S(u°,HI), I = 1,2, in its interior.

Figure 2. Periodic meshes of triangles: (a) Regular pattern; (b) Chevron pattern;
(c) Union-Jack pattern; (d) Criss-Cross pattern.

Figure 3. Superconvergence points for the z1 -derivative for the class of harmonic
solutions of Poisson's equation: Cubic triangular elements. The superconvergence
points are located at the intersection of the zero-contours C a. (Q4; , t; I), i

1,2, for the z1 -derivative of the error for the harmonic monomial solutions. In
the Figures Cp_(QH;T,!t; I) (resp. C (QH;Tr, t; I)) was drawn using thin (resp.

thick) continuous line in each element i" (the element boundaries were drawn using
dashed line). The zero-contours and the superconvergence points are given for: (a)
The Regular pattern; (b) The Chevron pattern; (c) The Union-Jack pattern; (d)
The Criss-Cross pattern.

Figure 4. Superconvergence points for the z1-derivative for the classes of harmonic
and general solutions of Poisson's equation: Cubic triangular element r from the
Regular pattern. (a) The triangle with the zero-contours Cv. (Q4;, t; I),,=
1,2 for the quartic harmonic monomials; (b) The triangle with the zero contours
Ca. (Q;,T;),i = 1,... ,4 for all the quartic monomials for which the error in
the x.-derivative does not vanish identically. The zero contours for the harmonic
monomials where drawn using thick continuous line; the zero-contours for the other
two monomials were drawn using thin continuous line. Note that the midpoint
of the horizontal side of the triangle belongs to the zero-contours for all quartic
monomials and is a superconvergence point (the only one) for general solutions.

Figure 5. Cubic serendipity element: Superconvergence points for the z1 -derivative
for the class of general solutions of Poisson's equation. The superconvergence points
are located at the intersection of the zero-contours C a. (Q,; Tr,T; I), i = 1, 2, where
QI(Zl,-2) = zT and Q2(Z;,: 2) = 4 - 6z0z2 + z4. The zero-contours for Q1
(resp. Q2) were drawn with thin (resp. thick) continuous line. Note that there
are four distinct superconvergence points and a superconvergence line (the line
indicated by a multitude of points and passes through the center of the element).

Figure 6. Serendipity elements of degree p (4 _< p :5 7) : Superconvergence
points for the z,-derivative for the class of harmonic solutions of Poisson's equation.
The superconvergence points are located at the intersection of the zero-contours
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CO (Q#; -, T; I) i = 1, 2, for the zx-derivative of the error for the harmonic mono-

nial solutions. In the Figures CO.(Q'; ,rt; I) (reap. C. (Q'; -,T; I) was drawn
using thin (reap. thick) continuous line. Zero-contours and superconvergence
points for the z1 -derivative for the serendipity square element of degree: (a) Four;
(b) Five; (c) Six; (d) Seven. Note that there are no superconvergence points for
the class of general solutions for these elements.

Figure 7. Effect of the material orthotropy. Superconvergence points for the

z1-component of the flux, qj(u) = KIIT- + K for the class of "harmonic"

solutions of the equation of orthotropic aeat-conduction: Cubic elements. The
superconvergence points are located at the intersection of the zero-contours
C9(,)(Q i , T; K(G)), i = 1,2. In the Figures the contours were drawn for ma-

trices K(O) with A.K n = 10 and for grid-material orientations 0 = 00, 150,300,450,

60, 75%, 90g. The grid-material orientation is measured by the angle 6 between
the zl-axis and the principal-axis corresponding to K.,j. (measured counterclock-
wise). (a) Zero-contours and superconvergence points for the tensor-product fam-
ily; (b) Zero-contours and superconvergence points for the intermediate family.
Note that the two Figures are identical. The locations of the superconvergence
points (which are at the (3 x 3)-Gauss-Legendre points) do not depend on the
grid-material orientation.

Figure 8. Effect of the material orthotropy. Superconvergence points for the zx-

component of the flux, qj (u) = J 11 au + K12 au for the class of "harmonic" solu-

tions of the equation of orthotropic heat-conduction: Cubic serendipity elements.
The superconvergence points are located at the intersection of the zero-contours
Cq,(.)(QjH";T,T;K(e)), i = 1,2. In the Figures the contours were drawn for

matrices K(O) with K = 10 and for grid-material orientations 0 = 0. TheKm,.
grid-material orientation is measured by the angle B between the x,-axis and the
principal-axis corresponding to K.mj (measured counterclockwise). Zero-contours
and superconvergence points for grid material orientation 0: (a) B = 00; (b) 0 = 150;
(c) B = 300; (d) 0 = 450; (e) 0 = 600; (f) 0 = 750; (g) 0 = 900. Note that for
0 = 00,900 there are three superconvergence lines. The zero-contours and the
superconvergence points for all the above B's are displayed in Fig. 8h. Note that
there is only one superconvergence point, located at the center of the element,
which is valid for all grid-material orientations.

Figure 9. Effect of the material orthotropy. Superconvergence points for the

z1 -component of the flux, ql(u) = K 1 1±t + K 12 2( for the class of "harmonic"
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solutions of the equation of orthotropic heat-conduction: Quadratic triangular
elements, Regular pattern. The superconvergence points are located at the inter-
section of all the zero-contours CQ,(.)(Q*H";rT;K(8)), i = 1,2. In the Figures

the contours were drawn for matrices K(8) with = = 10 and for grid-material

orientations 0, where 0 is the angle between the z1-axis and the principal-axis cor-
responding to Kd. (measured counterclockwise) for the element r (shaded gray in
Fig. 2a). Zero-contours and superconvergence points for (a) 6 = 00; (b) 0 = 150;
(c) 0 = 300; (d) 0 = 450; (e) 9 = 600; (f) 9 = 750; (g) 0 = 900. Note that
for 0 = 0* there are two superconvergence points; the 8 = 900 there are four su-
perconvergence points. The zero-contours and superconvergence points for all the
angles 0, mentioned above, are plotted in Fig. 9h. Note that there is no common
superconvergence points for all the grid-material orientations.
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List of Tables

Table Ia. Superconvergence points for periodic meshes of triangular elements
of degree p (1 < p _< 5). Harmonic solutions: Regular, Chevron and Union-
Jack patterns. The superconvergence points for the zj-derivative are listed for the
shaded-element shown in Figs. 2a, 2b, 2c. Note that the superconvergence points
in the element are the same for all three patterns.

Table lb. Superconvergence points for periodic meshes of triangular elements
of degree p (6 < p _< 7). Harmonic solutions: Regular, Chevron and Union-
Jack patterns. The superconvergence points for the z:-derivative are listed for the
shaded-element shown in Figs. 2a, 2b, 2c. Note that the superconvergence points
in the element are the same for a" three patterns.

Table 2a. Superconvergence points for periodic meshes of triangular elements of
degree p (1 < p < 5). Harmonic solutions: Criss-Cross pattern. The supercon-
vergence points for the z1 -derivative are listed for the shaded-element T1 shown in
Fig. 5d.

Table 2b. Superconvergence points for periodic meshes of triangular elements of
degree p = 6. The superconvergence points for the zj-derivative are listed for the
shaded-element T' shown in Fig. 2d.

Table 3a. Superconvergence points for periodic meshes of triangular elements of
degree p (1 _< p _ 5). Harmonic solutions: Criss-Cross pattern. The supercon-
vergence points for the z2-derivative are listed for the shaded-element -r2 shown in
Fig. 2d.

Table 3b. Superconvergence points for periodic meshes of triangular elements of
degree p = 6. The superconvergence points for the zx-derivative are listed for the
shaded-element T2 shown in Fig. 2d.

Table 4a. Superconvergence points for periodic meshes of triangular elements of
degree p (1 _5 p _< 7). General solutions: Regular pattern. This Table refers to the
superconvergence points given in Tables la, lb for the class of harmonic solutions.
The points of Tables la, lb which are also superconvergence points for general
solutions for this pattern are indicated by the word yes.

Table 4b. Superconvergence points for periodic meshes of triangular elements of
degree p (1 < p _5 7). General solutions: Chevron pattern. This Table refers to the
superconvergence points given in Tables la, lb for the class of harmonic solutions.
The points from Tables la, lb which are also superconvergence points for general
solutions for this pattern are indicated by the word yes.

Table 4c. Superconvergence points for periodic meshes of triangular elements of
degree p (1 _• p < 7). General solutions: Union-Jack pattern. This Table refers
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to the superconvergence points given in Tables la, lb for the class of harmonic
solutions. The are no superconvergence points for general solutions for this pattern.

Table 5a. Superconvergence points for periodic meshes of triangular elements of
degree p (I < p _< 6). General solutions: Criss-Cross pattern. This Table refers
to the superconvergence points given in Tables 2a, 2b for the class of harmonic
solutions. The points from Tables 2a, 2b which are also superconvergence points
for the class of general solutions for the element T (shown in Fig. 5d) are indicated
by the word yes.

Table 5b. Superconvergence points for periodic meshes of triangular elements of
degree p (1 • p _< 6). General solutions: Criss-Cross pattern. This Table refers
to the superconvergence points given in Tables 3a, 3b for for the class of harmonic
solutions. There are no superconvergence points for the class of general solutions
for the element T2 (shown in Fig. 5d).

Table 6a. Superconvergence for meshes of triangular elements. Quadratic el-
ements, Regular pattern, harmonic solution (uH(X1 , 2) = sin(rzl) sinh(•r• 2 )) :
Convergence of the discrete norms for various selections of the points. Column 2:
Convergence of the discrete norm E' which includes all four points given in Table
la for p = 2. Column 3: Convergence of the discrete norm E" which includes only
the first two points from Table la (the points belong to the element bound- r;).
Column 4: Convergence of the discrete norm E' which includes only the third and
fourth points from Table la (the points are in the interior of the el-rment). Note
that all three discrete norms E', E", E"' are superconvergent.

Table 6b. Superconvergence for meshes of triangular elements. Quadratic ele-
ments, Regular pattern, general solution (u 0 ( 1 , 2z) = sin(Irw:)sin(rX2 )) : Con-
vergence of the discrete norms for various selections of the points. Column 2:
Convergence of the discrete norm E' which includes all four points given in Table
la for p = 2. Column 3: Convergence of the discrete norm E" which includes only
the first two points from Table la (the points belong to the element boundary).
Column 4: Convergence of the discrete norm E' which includes only the third and
fourth points from Table la (the points are in the interior of the element). Note
that only the discrete norm E" is superconvergent.

Table 6c. Superconvergence for meshes of triangular elements. Cubic elements,
Regular pattern, harmonic solution (u'(z 1 , I2) = sin(wrz) sinh(VX2)) : Conver-
gence of the discrete norms for various selections of the points. Column 2: Con-
vergence of the discrete norm E' which includes all six points given in Table la for
p = 3. Column 3: Convergence of the discrete norm E" which includes only the
third point from Table la (the mid-point of the the side of the element parallel to
the z1 -axis). Column 4: Convergence of the discrete norm E"' which includes all
the points from Table la except the third one. Note that all three discrete norms
E', E", E' are superconvergent.
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Table 6d. Superconvergence for meshes of triangular elements. Cubic elements,
Regular pattern, general solution (uG(X1 , 22) = sin(wz1 ) sin(WZ2 )) : Convergence
of the discrete norms for various selections of the points. Column 2: Convergence
of the discrete norm E' which includes all six points given in Table la for p = 3.
Column 3: Convergence of the discrete norm E" which includes only the third
point from Table I& (the mid-point of the the side of the element parallel to the
=1 -axis). Column 4: Convergence of the discrete norm E"' which includes all the
points from Table la except the third one. Note that only the discrete norm E" is
superconvergent.

Table 7. Superconvergence points for square-elements of the serendipity family.
Superconvergence points for the x,-derivative for the class of harmonic solutions for
elements of degree p (3 < p < 7). The vertices of the square are at (-1.,-I.), (1.,-I.),
(1.,l.), (-1.,1.). Note that: a. For p = 3 we have three lines of superconvergence for
the class of harmonic solutions; the thick continuous line in Fig. 5. In this Table
for p = 3 we give the four points and the line which are also superconvergent for
general solutions; b. For p _> 4 there are no superconvergence points for general
solutions.

Table 8a. Superconvergence for meshes of square elements. Cubic elements, gen-
eral solution (u G(X, "2) = sin(wzl) sin(TWO)) : (3 x 3) Gauss-Legendre points.
Values of the discrete-norm of the z:-derivative E and of the product h- 4E for
uniform subdivisions of the mesh-size h. Note that the values of E are supercon-
vergent for both the tensor-product and the intermediate space.

Table 8b. Superconvergence for meshes of square elements. Cubic serendipity
elements, general solution (uG(: 1 , X2) = sin(irza ) sin(7r02)) : Effect of the selection
of the points. Column 2: Values of the discrete norm of the z:-derivative E and
of the product h- 3 E for uniform subdivisions of the mesh-size h when the (3 x 3)
Gauss-Legendre points are used in the computation of E. Column 3: Values of
the discrete-norm for the z:-derivative E and of the product h-4 E for uniform
subdivisions of the mesh-size h when the points given in Table 6a are employed in
the computation of E. Note that the values of E are superconvergent only when
points from Table 7 are employed.

Table 8c. Superconvergence for meshes of square elements. Quartic serendip-
ity elements, points from Table 7 : Effect of the nature of solution. Column 2:
Values of the discrete-norm of the z:-derivative E and of the product h-SE for
uniform subdivisions of the mesh-size h for the harmonic solution uH(Z:, 12) =

sin(wn1 ) sinh(wZ2 ). Column 3: Values of the discrete-norm of the xj-derivative
E and of the product h-4E for uniform subdivisions of the mesh-size h for the
general solution uG(Xl, 22) = sin(rz1 ) sin(VrX2). Note that the values of E are
superconvergent only for the harmonic solution.
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Triangular elements

Superconvergence points for the class of harmonic solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (1.0, 1.0)

Regular, Chevron, Union-Jack patterns

Points p=I p=2 p=3 p =4 p=5

1 0.5000000000, 0.2113248654, 0.0000000000, 0.0118976218, 0.0000000000,
0.0000000000 0.0000000000 0.O000000000 0.0000000000 0.0000000000

2 0.7886751346, 0.3752181980, 0.2821230756, 0.1726731646,
0.0000000000 0.0858825088 0.0000000000 0.0000000000

3 0.7500000000, 0.5000000000, 0.7178769244, 0.5000000000,
0.0458758546 0.0000000000 0.0000000000 0.0000000000

4 0.7500000000, 0.4715185566, 0.9881023782, 0.8273268354,
0.4541241452 0.3241733208 0.0000000000 0.0000000000

5 1.0000000000, 0.1195044522, 1.0000000000,
0.0000000000 0.0224992688 0.0000000000

6 0.8638176260, 0.7053452590, 0.4640525316,
0.6824066036 0.0071869378 0.0103019842

7 0.3095295948, 0.2328766474,
0.2201118672 0.15749286240

8 0.6402277154, 0.4734766188,
0.5196142358 0.3874100850

9 0.9063362308, 0.7356302926,
0.7871241952 0.6425966766

10 0.9343659198,
0.7080184052

Table la
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Triangular elements

Superconvergence points for the class of harmonic solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (1.0, 1.0)

Regular, Chevron, Union-Jack patterns

Points p = 6 p = 7

1 0.9871917636, 0.0797658369 0.0000000000, 0.0000000000

2 0.9556960448, 0.7771050728 0.0637900495, 0.0000000000

3 0.8901470515, 0.0000000000 0.9837699874, 0.0278840787

4 0.7965034496, 0.7034683949 0.9671927841, 0.8195293891

5 0.6451460051, 0.0000000000 0.7443785569, 0.0000000000

6 0.5873974006, 0.5156451535 0.8413048661, 0.7026536445

7 0.3658757490, 0.2978238991 0.6689015074, 0.6017629175

8 0.3548540007, 0.0000000000 0.5000000000, 0.0000000000

9 0.2851597869, 0.0102771287 0.4770713108, 0.4203250119

10 0.2807031259, 0.1264409904 0.2949370204, 0.2365148149

11 0.1098529492, 0.0000000000 0.2556214434, 0.0000000000

12 0.2236970856, 0.0897505908

13 0.1620004419, 0.0056060808

14 0.9362099504, 0.0000000000

15 1.0000000000, 0.0000000000

Table lb
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Triangular elements

Superconvergence points for the class of harmonic solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)

Criss-Cross pattern

Points p=l p=2 p=3 p=4 p=5

1 0.5000000000, 0.2113248654, 0.1464466094, 0.0761088279, 0.0488705882,
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

2 0.7886751346, 0.5000000000, 0.3397707358, 0.2355765633,
0.0000000000 0.0000000000 0.0000000000 0.0000000000

3 0.8535533906, 0.6602292641, 0.5000000000,
0.0000000000 0.0000000000 0.0000000000

4 0.5000000000, 0.9238911721, 0.7644234366,
0.5000000000 0.0000000000 0.0000000000

5 0.5000000000, 0.9511294118,
0.4887686394 0.0000000000

6 0.5000000000,
0.0000000000

Table 2a
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Triangular elements

Superconvergence points for the class of harmonic solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)

Criss-Cross pattern

Points p = 6

1 0.4554029520, 0.4414423293

2 0.0344614509, 0.0000000000

3 0.5445970478, 0.4414423293

4 0.1716793301, 0.0000000000

5 0.3821587890, 0.0000000000

6 0.6178412109, 0.0000000000

7 0.8283206698, 0.0000000000

8 0.9655385491, 0.0000000000

Table 2b

44



Triangular elements

Superconvergence points for the class of harmonic solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)

Cnss-Cross pattern

Points p=l p=2 p=3 p=4 p=5

1 0.5000000000, 0.7886751346, 0.8750000000, 0.7621420044, 0.8368698019,
0.5000000000 0.5000000000 0.2834936534 0.3163540210 0.2268165908

2 0.8750000000, 0.9145863153, 0.7540881642,
0.5000000000 0.3966634454 0.3397926069

3 0.8750000000, 0.8970792676, 0.6883014452,
0.7165063710 0.5000000000 0.3781734456

4 0.5000000000, 0.9145863153, 0.7811733816,
0.5000000000 0.6033365546 0.4582804499

5 0.7621420044, 0.9334689552,
0.6836459789 0.5000000000

6 0.7811733816,
0.5417195501

7 0.6883014452,
0.6218265544

8 0.7540881642,
0.6602073930

9 0.8368698019,

0.7731834092

10 0.5000000000,
0.5000000000

11 0.7760422930,
0.5000000000

Table 3a
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Triangular elements

Superconvergence points for the class of harmonic solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)

Criss-Cross pattern

Points p = 6

1 0.7631964888, 0.2833600514

2 0.8508031659, 0.2069721253

3 0.8678258572, 0.1849536861

4 0.7086428573, 0.5000000000

5 0.8383266448, 0.3701490568

6 0.8284878782, 0.3953625943

7 0.8332694721, 0.500000000

8 0.8284878779, 0.6046374047

9 0.9467769341, 0.5000000000

10 0.8383266448, 0.6298509433

11 0.7631964887, 0.7166399487

12 0.8508031661, 0.7930278749

13 0.8678258572, 0.8150463139

Table 3b
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Triangular elements

Superconvergence points for the class of general solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (1.0, 1.0)

Regular pattern; The point numbers correspond to the points in Tables la, lb

Points p=1 p=2 p=3 p=4 p=5 p=6 p=7

1 yes yes no no no no no

2 yes no no no no no

3 no yes no yes no no

4 no no no no no no

5 no no no no no

6 no no no no no

7 no no no no

8 no no no yes

9 no no no no

10 no no no

11 no no

12 no

13 no

14 no

15 no

Table 4a
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Triangular elements

Superconvergence points for the class of general solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (1.0, 1.0)

Chevron pattern; The point numbers correspond to the points in Tables la, lb

Points p=l p=2 p=3 p=4 p=5 p=6 p=7

1 yes no no no no no no

2 no no no no no no

3 no yes no yes no no

4 no no no no no no

5 no no no no no

6 no no no no no

7 no no no no

8 no no no yes

9 no no no no

10 no no no

11 no no

12 no

13 no

14 no

15 no

Table 4b
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Triangular elements

Superconvergence points for the class of general solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (1.0, 1.0)

Union-Jack pattern; The point numbers correspond to the points in Tables la, Ib

Points p=1 p=2 p=3 p=4 p=5 p=6 p=7

1 no no no no no no no

2 no no no no no no

3 no no no no no no

4 no no no no no no

5 no no no no no

6 no no no no no

7 no no no no

8 no no no no

9 no no no no

10 no no no

11 no no

12 no

13 no

14 no

15 no

Table 4c
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Triangular elements

Superconvergence points for the class of general solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)

Criss-Cross pattern; The point numbers correspond to the points in Tables 2a, 2b
(For the element ri in the pattern)

Points p=l p=2 p=3 p=4 p=5 p=6

1 yes yes no no no no

2 yes yes no no no

3 no no yes no

4 no no no no

5 no no no

6 no no

7 no

8 no

Table 5a
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Triangular elements

Superconvergence points for the class of general solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)

Criss-Cross pattern; The point numbers correspond to the points in Tables 3U, 3b
(For the element - 2 in the pattern)

Points p=l p=2 p=3 p= 4  p=5 p=6

1 no no no no no no

2 no no no no

3 no no no no

4 no no no no

5 no no no

6 no no

7 no no

8 no no

9 no no

10 no no

11 no no

12 no

13 no

Table 5b
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Triangular elements

Quadratic elements, Regular pattern

Harmonic solution uH

h El (h-3E') Ell (h-3E") Ell (h-3 E'')

0.2500 .06063740 (3.88) .07027678 (4.50) .04914226 (3.15)
0.1250 .00696365 (3.57) .00806014 (4.13) .00565854 (2.90)
0.0625 .00084995 (3.48) .00098347 (4.03) .00069111 (2.83)

0.03125 .00010559 (3.46) .00012217 (4.00) .00008587 (2.81)

Table 6a
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Triangular elements

Quadratic elements, Regular pattern

General solution uG

h E' (h-2 E') E" (h-3 E") E". (h-2 E")

0.2500 .03445760 (0.55) .03685704 (2.36) .03187807 (0.51)
0.1250 .00510295 (0.33) .00494697 (2.53) .00525431 (0.34)
0.0625 .00087724 (0.22) .00062918 (2.58) .00106923 (0.27)

0.03125 .00018505 (0.19) .00007899 (2.59) .00024949 (0.26)

Table 6b
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Triangular elements

Cubic elements, Regular pattern

Harmonic solution ui

h E' (h- 4 E') E" (h- 4 E") E"B (h- 4E"')

0.2500 .00205242 (0.53) .00184893 (0.47) .00209075 (0.54)
0.1250 .00012563 (0.51) .00012009 (0.49) .00012671 (0.52)
0.0625 .00000779 (0.51) .00000750 (0.49) .00000785 (0.51)
0.03125 .00000049 (0.51) .00000047 (0.49) .00000049 (0.51)

Table 6c
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Triangular elements

Cubic elements, Regular pattern

General solution uG

h E' (h-3 E') E" (h-4 EM ) E"' (h-3 E')

0.2500 .01523855 (0.98) .00172192 (0.44) .01667522 (1.07)
0.1250 .00211270 (1.08) .00011551 (0.47) .00231377 (1.18)
0.0625 .00027112 (1.11) .00000734 (0.48) .00029697 (1.22)

0.03125 .00003411 (1.12) .00000046 (0.48) .00003737 (1.22)

Table 6d
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Square elements

Superconvergence points for the class of harmonic solutions

Points p=3 p=4 p=5 p=6 p=-7

1 0 -0.5587732224 -0.7678487865 -0.8542303405 -0.7415311853
i2 E [-1, 1] -1.0000000000 -1.0000000000 -0.9584215542 -1.0000000000

2 0.7745966692 0.5587732224 0.0000000000 -0.5632551950 0.0000000000
0.5773502691 1.0000000000 -1.0000000000 -1.0000000000 -1.0000000000

3 -0.7745966692 0.0000000000 0.7678487865 0.0000000000 0.7415311853
0.5773502691 -0.5389584311 -1.0000000000 -0.9589718598 -1.0000000000

4 -0.7745966692 -0.6174062248 -0.5773502692 0.5632551950 -0.8404899503
-0.5773502691 0.0000000000 -0.7990568224 -1.0000000000 0.0000000000

5 0.7745966692 0.6174062248 0.5773502692 0.8542303405 -0.3896003525
-0.5773502691 0.0000000000 -0.7990568224 -0.9584215542 0.0000000000

6 0.0000000000 -0.5773502692 -0.7861575208 0.0000000000
0.5389584311 -0.1678536900 0.0000000000 0.0000000000

7 -0.5587732224 0.5773502692 -0.0538688187 0.3896003525
1.0000000000 -0.1678536900 0.0000000000 0.0000000000

8 0.5587732224 -0.5494131405 0.0538688187 0.8404899503
1.0000000000 0.0000000000 0.0000000000 0.0000000000

9 0.0000000000 0.7861575208 -0.7415311853
0.0000000000 0.0000000000 1.0000000000

10 0.5494131405 -0.8542303405 0.0000000000
0.0000000000 -0.9584215542 1.0000000000

11 -0.5773502692 -0.5632551950 0.7415311853
0.1678536900 1.0000000000 1.0000000000

12 0.5773502692 0.0000000000
0.1678536900 0.9589718598

13 -0.5773502692 0.5632551950
0.7990568224 1.0000000000

14 0.5773502692 0.8542303405
0.7990568224 0.9584215542

15 -0.7678487865
1.0000000000

16 0.0000000000
1.0000000000

17 0.7678487865
1.0000000000

Table 7
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Square elements

(3 x 3) Gauss-Legendre points

Cubic tensor-product space Cubic intermediate space

h E (h- 4E) E (h- 4E)

0.2500 0.000691647 (0.177) 0.00568511 (1.455)

0.1250 0.000043212 (0.176) 0.00035669 (1.461)

0.0625 0.000002686 (0.176) 0.00002229 (1.461)

Table 8a
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Square elements

Cubic serendipity space S3

(3 x 3) Gauss-Legendre points Points from Table 7

h E (h- 3E) E (h- 4 E)

0.2500 0.05310222 (3.399) 0.002463078 (0.631)

0.1250 0.00664258 (3.401) 0.000156494 (0.641)

0.0625 0.00083252 (3.410) 0.000009786 (0.641)

Table 8b
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Square elements

Quartic serendipity space S4

Points from Table 7

Harmonic solution u0 General solution uG

h E (h-sE) E (h- 4E)

0.2500 0.0011209 (1.148) 0.0010429 (0.267)

0.1250 0.0000350 (1.147) 0.0000652 (0.267)

0.0625 0.0000011 (1.148) 0.0000041 (0.269)

Table 8c
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The Laboratory for Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

"* To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

"* To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

"* To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

"* To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

"* To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babuilka,Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


